

[COTII 2019] ISSN 2348 – 8034
 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

85

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES

FLEXIBLE MANIPULATOR SYSTEM FOR RTOS ARCHITECTURE OF KUKA

INDUSTRIAL ROBOT WITH ARTIFICIAL INTELLIGENCE
Suyash Srivastava

*1
, Beena Rizvi

2
, Dr. Alok Mishra

3
 & Amit Mishr

a4

*1&2Assistant Professor, Department of Electronics and Communication Engineering, Ambalika Institute

of Management and Technology, Lucknow, India
3Professor, Department of Applied Science, Ambalika Institute of Management and Technology

Lucknow, India
4Student, M.TECH (Automation and Robotics), Ambalika Institute of Management and Technology

Lucknow, India

ABSTRACT
Industrial robots are characterized as a sophisticated mechanical components and it is used control algorithms. The

efficient use of robotics systems is limited by existing programming which makes software development very

complex and time-consuming too. The developed capabilities required for operating in industrial work place

including features such as reliable and correct navigation, flexible manipulation and vigorous object recognition.

The vision of the research project Robot was to easy robotics software development that is reduced development

time, by providing “robotics”.

Keywords: Artificial Intelligence, KRL programs, sys.config, config.dat

I. INTRODUCTION

Goal

To develop an object-oriented platform that permit to industrial robots using Java program. Like in traditional

robotic languages (e.g. Kuka Robotic Language), the new framework is to provide real-time assurance for

controlling robots. Developing robotics software, one should only be aware that real-time certain task steps, but

should not be occupy oneself with low-level aspects of real-time programming. This is an important goal to reduce

difficulty and allows to offer an application programming interface in plain Java instead of real-time ability

programming languages. The framework had to support easy control flow, motion programming, motion blending

and the motion trigger actions to achieve the performance. The framework support easy expressiveness of traditional

robot programs. By one application controlling multiple robots or devices, as well as sensor-guided motions.

II. SOLUTION

The framework had developed a multi-layered software architecture, provided prototypical reference

implementation (prototype-oriented, classless, or instance-based programming).

Robot Control Core which is implemented in C++ using Orocos. The real-time requirements of robot control which

allows to control KUKA robots at the same time using the Research Interface. RCC is interfaced through an

changeable dataflow language called Real-time Primitives Interface (RPI). We implemented the Java-based
Robotics. The Command Layer, is used for describing real-time transactions critical robot as a composition and

coordination of robotic Commands. Robot Commands consist of action. This layer includes an automatic translation

of robot transactions into runtime. By the use of Activity Layer of the Robotics API that programmers can provides

robot through an extensible set of interfaces. These Activities correspond to robot transactions with metadata that

allow composition using composition patterns such as sequential or parallel execution.

[COTII 2019] ISSN 2348 – 8034
 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

86

Figure 1. The Robotic architecture with API and RCC.

III. RESULTS

Using software architecture, the given goals could be achieved. Motion programming Language can be achieved by

using Activities, by including the higher capabilities of the robot such as force-based motions. The start position of

the robot is required for Motion planning, and it can retrieve from the meta-data of the existing activity and it does

not have to be given by the programmer.

Figure 2. Manipulator

Meta-data is more flexible than using the current robot position it allows sequence of activities for pre-planning

before execution. New modifications can put independent pieces of rough information together for making new

rules to modify a program without affecting its structure.

The tasks is given by a human. Robots have many sensors to detect physical data from any ware such as light, heat,

cold, deflection, temperature, movement, sound, bump, and pressure finding radio waves.

They have got efficient processors, number of multiple sensors and a huge memory to save the data to analyze

exhibit intelligence. In addition, robots are capable of learning from their mistakes by the use of database stored in

their memory and they can adapt to the new environment. This approach can be also applied for obey rules motions,

[COTII 2019] ISSN 2348 – 8034
 Impact Factor- 5.070

 (C)Global Journal Of Engineering Science And Researches

87

where an Activity may construct contact. By the first releasing force an activities have to cope with this case. The

Activity make-up patterns allow to specify actions that are to be implement when a definite state occurs,
and originate a multiple sequence of Activities into one transaction to remove unwanted delays between the two

Activities. The co-ordination of multiple robots, as all robots can control by a single application. The direct

interfaces differentiation shows that Robotics API code does not get the same syntactical compactness as written in

KRL.

Figure 3. Software Architecture

IV. OUTLOOK

The consideration was evaluated successfully in robotic applications. As development environment with extension

supporting the development of robotic applications in meta-data framework, but it’s using Service oriented

Architectures to control meta-data to greater automation solutions becomes feasible now a days. Moreover the

Robotics API is a helpful principle for domain specific robot languages but also for graphical programming of

KUKA robots.

REFERENCES

1. M. Vistein, A. Angerer, A. Hoffmann, A. Schierl, and W. Reif,“Interfacing industrial robots using

realtime primitives,” in Proc. IEEE Intl. Conf. on Automation and Logistics, Hong Kong, 2010.
2. H. Bruyninckx, “Open robot control software: the OROCOS project,” in Proc. 2001 IEEE Intl.

Conf. on Robotics& Automation, Seoul, Korea, 2001.

3. H. Muhe, “On reverse-engineering the KUKA Robot Language,” Workshop on DomainSpecific
Languages and models for ROBotic systems, 2010 IEEE/RSJ Intl. Conf. on Intelligent Robots &

Systems, Taipeh, Taiwan, 2010.

4. A. Angerer, A. Hoffmann, A. Schierl, M. Vistein, and W. Reif, “The Robotics API: An object-
oriented framework for modeling industrial robotics applications,” in Proc. 2010 IEEE/RSJ Intl.

Conf. on IntelligentRobots & Systems, Taipeh, Taiwan, 2010.

5. Introduction to robotics, SAEED B. NIKU

6. KUKA bascis programming manual
7. (KUKA) www.kuka-roboter.de

8. https://en.wikipedia.org/wiki/KUKA

9. S. Lopes, and J. Connell, “Sentience in Robots: Applications and Challenges”, IEEE Intelligent
Systems, Computer Society, 5(16), 2001.

10. http://www.easy-rob.de/product.html.

11. BRICS) www.best-of-robotics.org “Best practices in robotics research”

12. (OROCOS) www.orocos.org “The Orocos Project, Smarter control in robotics & automation”

